Two photochemical pathways in competition: matrix isolation, time-resolved and NMR studies of *cis*-[Ru(PMe₃)₄(H)₂][†]

Virginia Montiel-Palma,^a Robin N. Perutz,^{*a} Michael W. George,^b Omar S. Jina^b and Sylviane Sabo-Etienne^c

^a University of York, Heslington, York, UK YO10 5DD. E-mail: rnp1@york.ac.uk

^b University of Nottingham, University Park, Nottingham, UK NG7 2RD

^c Laboratoire de Chimie de Coordination du C. N. R. S., 205 Route de Narbonne, 31077 Toulouse Cedex 04, France

Received (in Basel, Switzerland) 20th March 2000, Accepted 8th May 2000

cis-[Ru(PMe₃)₄(H)₂] (1) reacts by two distinct photochemical pathways resulting in the formation of $[Ru(PMe_3)_4]$ and $[Ru(PMe_3)_3(H)_2]$; derivatives of these intermediates are generated in the presence of CO and Ph₂SiH₂.

Photochemical loss of H₂ from *cis*-metal dihydride complexes is a general phenomenon widely employed to generate reactive unsaturated species.¹ We have demonstrated by laser flash photolysis, matrix isolation and steady state photolysis of the complexes $[Ru(R_2PCH_2CH_2PR_2)_2H_2]$ (R = Me, Et, Ph, C₂F₅) that irradiation induces efficient loss of H₂ and formation of square-planar [Ru(R₂PCH₂CH₂PR₂)₂] intermediates.² It is therefore puzzling that UV irradiation of *cis*-[Ru(PMe₃)₄(H)₂] (1) in the presence of R_3SiH (R = Me, Ph) results in quantitative loss of PMe₃ and formation of [Ru(PMe₃)₃-(SiR₃)(H)₃].^{3,4} Here we present an investigation of the lowtemperature matrix, transient-solution and steady-state photochemistry of 1. We show that the reaction with R_3SiH creates the illusion of a single pathway. Our evidence reveals two photochemical pathways involving 16-electron intermediates, one gives rise to $[Ru(PMe_3)_4]$ (2) and the other to [Ru- $(PMe_3)_3(H)_2]$ (3).

When 1 was irradiated under CO in $[^{2}H_{6}]$ benzene (or $[^{2}H_{8}]$ toluene), two monocarbonyls *cis, mer*-[Ru(PMe₃)₃(CO)(H)₂] (4)⁵ and [Ru(PMe₃)₄(CO)] (5)⁶ and two dicarbonyls [Ru-(PMe₃)₂(CO)₂(H)₂] (6)⁷ and [Ru(PMe₃)₃(CO)₂] (7),^{8,9} were identified by their characteristic ¹H and ³¹P NMR as well as their solution IR spectra (ESI[†]). The number of CO groups in each species was counted *via* the ³¹P NMR spectrum with ¹³CO labelled material.¹⁰ The identity of the products obtained by steady-state solution photolysis suggests the occurrence of photochemical loss of H₂ in competition with the loss of PMe₃ established previously.^{3,4} In order to test this hypothesis, we turned to matrix isolation in conjunction with time-resolved spectroscopy in solution.

Complex **1** was isolated in an Ar matrix at 12 K.¹¹ After UV irradiation (17 min, 273 < λ < 400 nm), the originally colourless matrix turned purple and the area of the ν (Ru–H) bands (1820 cm⁻¹) decreased by 11%. A weak new band in the ν (Ru–H) region was observed at *ca*. 1790 cm⁻¹. The UV–VIS spectrum showed new bands at 543 and *ca*. 304 nm (Fig. 1). Subsequent selective photolysis (λ > 520 nm) depleted the principal initial photoproduct leaving bands of another species with $\lambda_{max} = 503$, *ca*. 610 nm. UV irradiation (273 < λ < 400 nm, 30 min) of **1** in an Ar + 1.5% CO matrix, resulted in new bands in the ν (CO) region assigned to **4**, **5** and **7** (Table 1, ESI⁺).

Laser flash photolysis $(308 \text{ nm})^{12}$ of **1** in cyclohexane solution under argon generated a transient within the instrumental response time, which decayed by second order kinetics ($k_2/\epsilon l = 2.9 \times 10^5 \text{ s}^{-1}$). The spectrum under 400 Torr of H₂ recorded by this method ($\lambda_{\text{max}} = 550 \pm 5 \text{ nm}$) greatly

 $\begin{array}{c} 0.3 \\ 0.2 \\ 0.4 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.0 \\ 300 \end{array}$ (a) Ar matrix 12 K (b) C₆H₁₂ 300 K, 100 ns after flash $\begin{array}{c} 0.6 \\ 0.6 \\ 0.0$

Fig. 1 (*a*) UV–VIS spectrum following photolysis of **1** in an argon matrix at 12 K (17 min, $273 < \lambda < 400$ nm). (*b*) Point-by-point transient spectrum at 300 K measured 100 ns after laser flash photolysis (308 nm) of **1** in cyclohexane under 400 Torr H₂.

resembled the one obtained after photolysis in inert matrices (Fig. 1). The transient reacted with a variety of reagents giving pseudo-first order rate constants which varied linearly with the concentration of added quencher (Fig. S1, ESI[†]). The resulting second order rate constants are: $k(CO) = (8.9 \pm 0.4) \times 10^8 > k(H_2) = (5.6 \pm 0.4) \times 10^8 > k(Et_2SiH_2) = (2.2 \pm 0.1) \times 10^7 > k(PMe_3) = (1.1 \pm 0.1) \times 10^6 > k(Et_3SiH) = (2.8 \pm 0.1) \times 10^5 > k(PEt_3) = (2.7 \pm 0.8) \times 10^5 > k(C_2H_4) = (1.8 \pm 0.1) \times 10^5 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}.^{13}$

When the decay of the transient generated under H₂ was complete, no net change in absorbance was observed at any wavelength from 350 to 800 nm. In contrast, a high net change in absorbance at 350 nm in the presence of PMe₃ (<0.1 mol dm⁻³) implicated a longer-lived photoproduct.¹⁴ This behaviour can be understood if the extinction coefficient in the visible region of **2** greatly exceeds that of **3**. The principal transient species observed by UV–VIS spectroscopy is then **2**. Reaction of **2** with H₂ would regenerate **1**, while treatment with PMe₃ would result in [Ru(PMe₃)₅] (probably unstable).

Further kinetic information was obtained by time-resolved infrared (TRIR) spectroscopy. A cyclohexane solution of **1** under CO was irradiated with a pulsed laser (266 nm) and the IR spectrum measured in a point-by-point fashion.¹⁵ The TRIR spectrum showed a well-defined band at 1929 cm⁻¹ due to **4** (Fig. 2). The second order rate constant for formation of **4** was determined [p(CO) = 150 to 760 Torr] as $k_2 = (5.1 \pm 0.6) \times 10^7$ dm³ mol⁻¹ s⁻¹. Since this value is about 17 times smaller than the rate constant for reaction of the UV–VIS transient with CO (see above), we postulate that **2** is the only transient *observable* by flash photolysis with UV–VIS detection.¹⁶

[†] Electronic supplementary information (ESI) available: IR spectral data for 4–7 (Table 1) and kinetic data (Fig. S1). See http://www.rsc.org/suppdata/ cc/b0/b002297g/

Fig. 2 Growth of v(CO) band at 1929 cm⁻¹ of 4 measured by TRIR spectroscopy after flash photolysis (266 nm) of 1 in cyclohexane under 300 Torr CO. Inset shows partial spectrum 23 μ s after flash.

At this stage, we knew that laser flash photolysis of 1 generates 2 which reacts with Et₃SiH, presumably to give [Ru(PMe₃)₄(SiEt₃)H]. In apparent contradiction, steady state photolysis of 1 with Me₃SiH or Ph₃SiH only gives [Ru- $(PMe_3)_3(SiR_3)(H)_3$] (R = Me, Ph), derived from loss of PMe₃.^{3,4} We therefore investigated the products of irradiating 1 with silanes by NMR spectroscopy. Low temperature photolysis in [²H₈]toluene at 195 K in the presence of HSiMe₃ or HSiEt₃ generated the trihydrides but did not reveal the anticipated H₂-loss products. Reasoning that silanes with a smaller cone angle would stabilise $[Ru(PMe_3)_4(SiR_3)H]$, we irradiated 1 in the presence of dihydridosilanes. Photolysis of 1 with Ph₂SiH₂ yielded cis-[Ru(PMe₃)₄(SiPh₂H)H] and [Ru(P-Me₃)₃(SiPh₂H)(H)₃]¹⁷ with an initial ratio of quantum yields of ca. 1:4.5 respectively.¹⁸ Similar results were obtained with Et₂SiH₂, HSi(OMe)₂(allyl) and HSiMe₂(allyl).

Our evidence from a variety of methods now provides a consistent view of the photochemistry of **1** (Scheme 1). Two photochemical pathways act in competition: loss of PMe₃ occurs with a quantum yield *ca*. 4.5 times that for loss of H₂ in solution. We postulate that the H₂-loss products, *cis*-[Ru-(PMe₃)₄(SiR₃)H], are generated initially with all silanes, but if the silane is bulky (R = Me, Et, Ph), these products are labile and are converted to [Ru(PMe₃)₃(SiR₃)(H)₃]. Rapid displacement of PMe₃ by H₂ from *cis*-[Ru(PMe₃)₄(SiR₃)H] has also been observed by Berry.¹⁹ Competitive photodissociation of

Scheme 1 The photoreactivity of 1 showing the reactions of the primary photoproducts with CO and Ph₂SiH₂. The methods employed for detection are indicated: MI = matrix isolation, FP = flash photolysis, TRIR = time resolved IR, SSIR = IR spectroscopy following steady-state irradiation and NMR = NMR spectroscopy following steady-state irradiation.

dihydrogen and phosphine has been encountered in the tetrahydride system $[Os(H)_4(PMe_2Ph)_3]$,²⁰ but H₂ photodissociation is the sole pathway in $[Ir(\eta^5-C_5Me_5)(PMe_3)(H)_2]$.²¹

We are grateful for support from CONACYT (México), ORS Awards, The British Council-Alliance Programme and to Professor D. H. Berry, Dr J. N. Moore and Dr S. B. Duckett for helpful discussions.

Notes and references

- 1 R. N. Perutz, Pure Appl. Chem., 1998, 70, 2211.
- 2 L. Cronin, M. C. Nicasio, R. N. Perutz, R. G. Peters, D. M. Roddick and M. K. Whittlesey, J. Am. Chem. Soc., 1995, 117, 10047.
- 3 (a) D. H. Berry and L. J. Procopio, J. Am. Chem. Soc., 1991, 113, 8627;
 (b) J. A. Reichl and D. H. Berry, Adv. Organomet. Chem., 1998, 43, 197.
- 4 M. J. Burn and R. G. Bergman, J. Organomet. Chem., 1994, 472, 43.
- 5 W. Kohlmann and H. A. Werner, *Naturforsch, Teil B*, 1993, **48**, 1499 ($v_{(CO)}$ of **4** (C₆H₆) = 1940 cm⁻¹ is inconsistent with our measurements).
- 6 5: ${}^{31}P{}^{1}H$ NMR (121.5 MHz, C₆D₆, 300 K): δ -10.1 (s). IR v({}^{13}CO) (C₆D₆): 1760 cm⁻¹.
- 7 R. J. Mawby, R. N. Perutz and M. K. Whittlesey, *Organometallics*, 1995, **14**, 3268.
- 8 R. Boese, W. B. Tolman and K. P. C. Vollhardt, *Organometallics*, 1986, 5, 582. Note that 7 adopts a fluxional C_{2v} structure.⁹
- 9 M. Ogasawara, F. Maseras, N. Gallego-Planas, K. Kawamura, K. Ito, K. Toyota, W. E. Streib, S. Komiya, O. Eisenstein and K. G. Caulton, *Organometallics*, 1997, 16, 1979.
- 10 ³¹P{¹H} NMR (121.5 MHz, [²H₈]toluene, 300 K). [Ru(PMe₃)₃-(¹³CO)(H)₂]: δ 1.0 (dd, ²J_{PP} 25.4 and ²J_{PC} 10.5 Hz), δ –9.3 (td, ²J_{PP} 24.7 and ²J_{PC} 9 Hz); [Ru(PMe₃)₂(¹³CO)₂(H)₂]: δ –0.8 (t, ²J_{PC} 9.5 Hz); [Ru(PMe₃)₃(¹³CO)₂]: δ –4.3 (t, ²J_{PC} 8.4 Hz); [Ru(PMe₃)₄(¹³CO)]: δ –9.8 (d, ²J_{PC} 2.9 Hz).
- 11 Compound 1 was sublimed at 328 K and cocondensed with argon onto a window cooled to 20 K. The matrix was cooled to 12 K, see D. M. Haddleton, A. McCamley and R. N. Perutz, *J. Am. Chem. Soc.*, 1988 110, 1810.
- 12 Laser flash photolysis experiments were performed using a XeCl excimer laser ($\lambda_{exc} = 308$ nm, pulse width *ca*. 50 ns).²
- 13 E. Wilhelm and R. Battino, *Chem. Rev.*, 1973, **73**, 1. The solubilities of CO, H₂ and C₂H₄ in cyclohexane were taken as 9.3×10^{-3} , 3.8×10^{-3} and 1.4×10^{-1} mol dm⁻³ atm⁻¹ respectively. Errors in rate constants are quoted to 95% confidence limits.
- 14 The rate constant for reaction with PMe₃ did not vary significantly with the wavelength of measurement.
- 15 Nd: YAG laser ($\lambda_{exc} = 266$ nm, detection with diode IR laser, CaF₂ windows, 1 mm pathlength), see M. W. George, M. Poliakoff and J. J. Turner, *Analyst*, 1994, **119**, 551.
- 16 The detection of the v(CO) band of 5 by TRIR spectroscopy proved difficult due to overlap with the Ru–H stretching mode of 1 and its low IR extinction coefficient. To our surprise, bands were observed at 1828 and 1881 cm⁻¹ (rise time < 1 μ s) which correspond to the multiple substitution product 7 even when using an open-flow system. They were confirmed to result from a single-photon process. This species may be derived from hot 2 (full details will be published elsewhere).
- 17 Selected NMR data [²H₈]toluene, 294 K. [Ru(PMe₃)₄H(SiPh₂H)] ¹H NMR (400.1 MHz): δ –10.3 (dq, 1 H, ²J_{HP} 67, 22.5 Hz, RuH), 5.9 (tt, 1H, ³J_{PH} 14.6, 4.7 Hz, SiPh₂H). ³¹P NMR (162 MHz): ABX₂ δ-0.1 (m, ²J_{PP} 25, 23.7 Hz, X₂), -10.2 (m, ²J_{PP} 25, 16 Hz, A) and -10.7 (m, ²J_{PP} 25, 16 Hz, B. [Ru(PMe₃)₃(H)₃(SiPh₂H)] ¹H NMR: δ –9.5 (m, 3 H, RuH₃), 6.7 (m, 1 H, SiPh₂H). ³¹P NMR: δ –10.4 (br s) J_{SiH} by ²⁹Si filtered ¹H{³¹P} spectroscopy: 64.5 Hz.
- 18 Relative quantum yields were calculated from the integrations of the dangling Si-H protons of both products in the ¹H NMR spectra recorded after short photolysis times in the presence of 3 equiv. of silane. On more prolonged photolysis, the ratio of the yields approaches unity, as a result of thermal/photochemical interconversion of the products.
- (a) D. H. Berry, personal communication; V. K. Dioumaev, K. Plössl, P. J. Carroll and D. H. Berry, *J. Am. Chem. Soc.*, 1999, **121**, 8391; (b) We further tested this hypothesis by placing a 1:1 solution of *cis*-[Ru(PMe₃)₄(SiPh₂H)H] and [Ru(PMe₃)₃(SiPh₂H)(H)₃] under dihydrogen and heating to 80 °C. After 2 h the ratio of the products changed to 1:3.9 respectively.
- 20 J. W. Bruno, J. C. Huffman, M. A. Green, J. D. Zubkowski, W. E. Hatfield and K. G. Caulton, *Organometallics*, 1990, 9, 2556.
- 21 A. Arndtsen, R. G. Bergman, T. A. Mobley and T. H. Peterson, Acc. Chem. Res., 1995, 28, 154.